Use pandas.DataFrame.rename_axis()
to set the index name/title, in order to get the index use DataFrame.index.name
property and the same could be used to set the index name as well. When you create a DataFrame, by default pandas create an index name as 'Index'
. By using the approaches mentioned in this article, you can set the custom name to index.
Alternatively, the index name can be set using df.index.rename()
, df.index.set_names()
.
Key Points –
- The index name provides a label for the index, enhancing clarity and usability in DataFrame operations.
- Use the
set_index()
method to establish one or more columns as the DataFrame’s index while optionally naming it. - You can directly assign a name to the index using the
df.index.name
attribute. - The
inplace
parameter inset_index()
allows modifications to be made directly to the original DataFrame. - The
drop
parameter inset_index()
determines whether the original column used for the index should be retained in the DataFrame. - Use the
reset_index()
method to revert to the default integer index and convert the current index back to a column.
Quick Examples of Pandas Set Index Name
Following are quick examples of setting the index name to pandas DataFrame.
# Quick examples of pandas set index name
# Example 1: Get name of the index column of DataFrame
index_name=df.index.name
# Example 2: Set index name
df.index.name='Index1'
# Example 3: Set column as index
df = pd.DataFrame(technologies).set_index('Courses')
# Example 4: Rename index
df = df.rename_axis('Courses1')
# Example 5: Get pandas index title/name by index and columns parameter
df = df.rename_axis(index='Courses', columns="Courses1")
# Example 6: Removing index and columns names to set it none
df = df.rename_axis(index=None, columns=None)
# Example 7: Using df.index.rename
# Get pandas index title/name
df.index.rename('Courses1', inplace=True)
# Example 8: Add multilevel index
# Using set_index()
df2 = df.set_index(['Courses', 'Duration'], append=True)
# Example 9: Rename Single index from multi level
df2.index = df2.index.set_names('Courses_Duration', level=2)
# Example 10: Rename all indexes
df2.index=df2.index.rename(['Index','Courses_Name','Courses_Duration'])
To run some examples of set index names to Pandas DataFrame, let’s create Pandas DataFrame using data from a dictionary.
# Create DataFrame
import pandas as pd
technologies = {
'Courses':["Spark","PySpark","Python","pandas"],
'Fee' :[20000,25000,22000,30000],
'Duration':['30days','40days','35days','50days'],
'Discount':[1000,2300,1200,2000]
}
index_labels=['r1','r2','r3','r4']
df = pd.DataFrame(technologies,index=index_labels)
print("Create DataFrame:\n", df)
Yields below output.
By default, the DataFrame assigns an Index name as Index
and this is not shown on the DataFrame output.
Get Index Name From Pandas DataFrame
As I said above, Pandas assign a default name to the Index column, you can get this using DataFrame.index.name
# Get name of the index column of DataFrame.
index_name=df.index.name
Now, let’s set a custom Index name to the DataFrame.
# Set/Change the DataFrame index name
df.index.name = 'Index_Name'
print("Set the index name to DataFrame:\n", df)
Yields below output.
Assign Column as Index using set_index()
Use pandas.DataFrame.set_index() method to set a column as an index. In the below example, I am setting the column Courses
as Index. When you do this, the column name is assigned as an index name and it will be removed from columns.
# Set Existing column as Index
df = pd.DataFrame(technologies).set_index('Courses')
print(df)
# Output:
# Fee Duration Discount
# Courses
# Spark 20000 30days 1000
# PySpark 25000 40days 2300
# Python 22000 35days 1200
# Pandas 30000 50days 2000
# To Get index as columns name.
print (df.index.name)
# Output:
# Courses
Pandas Set Index Name using rename_axis()
You can also rename the Index name using rename_axis()
, just pass the index name you wanted as an argument to this method. This method also takes several arguments like inplace=True
, axis=1
and more, refer to pandas documentation for more details.
# Set Index Name using rename_axis() method
df = df.rename_axis('Courses1')
print(df)
# Output:
# Fee Duration Discount
# Courses1
# Spark 20000 30days 1000
# PySpark 25000 40days 2300
# Python 22000 35days 1200
# Pandas 30000 50days 2000
It sets the name of the index column of the DataFrame to Courses1
. Now let’s see how to rename the axis of the Index column. For example, set the axis name as Courses_Name
.
# Rename index column by rename_axis() method
df = pd.DataFrame(technologies).set_index('Courses').rename_axis('Courses_Name', axis=1)
print(df)
Yields below output.
# Output:
Courses_Name Fee Duration Discount
Courses
Spark 20000 30days 1000
PySpark 25000 40days 2300
Python 22000 35days 1200
Pandas 30000 50days 2000
You can also use the parameters index
and column
in order to get pandas index title/name. For example-
# Get pandas index title/name by index and Column parameter
df = pd.DataFrame(technologies,index=index_labels)
df = df.rename_axis(index='RowNumber', columns="Row")
print(df)
# Output: Set Name and Index axis
# Row Courses Fee Duration Discount
# RowNumber
# r1 Spark 20000 30days 1000
# r2 PySpark 25000 40days 2300
# r3 Python 22000 35days 1200
# r4 pandas 30000 50days 2000
# Removing index and columns names.
df = df.rename_axis(index=None, columns=None)
print(df)
# Output: Index and Columns to set none
.
# Fee Duration Discount
# Spark 20000 30days 1000
# PySpark 25000 40days 2300
# Python 22000 35days 1200
# pandas 30000 50days 2000
Using DataFrame.index.rename() get Pandas Index Title/Name
In this section, I will use df.index.rename
with inplace=True
parameter in order to set the index name on the existing DataFrame.
# Using de.index.rename get pandas index title/name.
df.index.rename('Row', inplace=True)
print(df)
Yields below output.
# Output:
Courses Fee Duration Discount
Row
r1 Spark 20000 30days 1000
r2 PySpark 25000 40days 2300
r3 Python 22000 35days 1200
r4 pandas 30000 50days 2000
Use set_index() to Add Multiple Index
To add multiple indexes using DataFrame.set_index()
, you can pass a list of column names to the keys
parameter. Below are examples of append columns Courses
and Duration
to row Index.
# Add Multilevel index using set_index()
df2 = df.set_index(['Courses', 'Duration'], append=True)
print(df2)
Yields below output.
# Output:
Fee Discount
Row Courses Duration
r1 Spark 30days 20000 1000
r2 PySpark 40days 25000 2300
r3 Python 35days 22000 1200
r4 pandas 50days 30000 2000
Rename Multi Level Index Names Using index.set_names()
By using DataFrame.index.set_names()
you can change the index of a specific level when you have multiple levels of row indexes. For example-
# Rename Single index from multi Level
df2.index = df2.index.set_names('Courses_Duration', level=2)
print(df2)
Yields below output.
# Output:
Fee Discount
Row Courses Courses_Duration
r1 Spark 30days 20000 1000
r2 PySpark 40days 25000 2300
r3 Python 35days 22000 1200
r4 pandas 50days 30000 2000
Rename Multiple of Indexes
When you have multiple rows indices and if you want to rename multiple indices at the same time, use DataFrame.index.rename()
. Note that you need to specify all indices as a parameter.
# Rename all indexes
df2.index=df2.index.rename(['Row','Courses_Name','Courses_Duration'])
print(df2)
Yields below output
# Output:
Fee Discount
Row Courses_Name Courses_Duration
r1 Spark 30days 20000 1000
r2 PySpark 40days 25000 2300
r3 Python 35days 22000 1200
r4 pandas 50days 30000 2000
Complete Examples of Set Index Name
import pandas as pd
technologies = {
'Courses':["Spark","PySpark","Python","pandas"],
'Fee' :[20000,25000,22000,30000],
'Duration':['30days','40days','35days','50days'],
'Discount':[1000,2300,1200,2000]
}
index_labels=['r1','r2','r3','r4']
df = pd.DataFrame(technologies,index=index_labels)
print(df)
# Get name of the index column of DataFrame
df.index.name
'Index'
df.index.name='Index1'
print(df)
# Get pandas index/name by set_index
df = pd.DataFrame(technologies).set_index('Courses')
print(df)
# To get Index and Column names
print (df.index.name)
print (df.columns.name)
# Rename a column by rename_axis method
df = df.rename_axis('Courses1')
print(df)
# Rename index column by rename_axis() method
df = pd.DataFrame(technologies).set_index('Courses').rename_axis('Courses_Name', axis=1)
print(df)
# Get pandas index title/name by index and Column parameter
df = df.rename_axis(index='RowNumber', columns="Row")
print(df)
# Removing index and columns names to set it none
df = df.rename_axis(index=None, columns=None)
print(df)
# Using de.indx.rename get pandas index title/name
df.index.rename('Row', inplace=True)
print(df)
# Add multilevel index using set_index()
df2 = df.set_index(['Courses', 'Duration'], append=True)
print(df2)
# Rename Single index from multi level
df2.index = df2.index.set_names('Courses_Duration', level=2)
print(df2)
# Rename all indexes
df2.index=df2.index.rename(['Row','Courses_Name','Courses_Duration'])
print(df2)
Conclusion
In this article, I have explained about getting and setting index column names using set_index()
, rename_axis()
methods, also renaming the index by rename_axis()
with several parameters.
Related Articles
- Pandas Drop Rows by Index
- Pandas Get Index from DataFrame?
- Pandas Index Explained with Examples
- Convert Pandas DatetimeIndex to String
- Pandas DataFrame reindex() Function
- Pandas.Index.drop_duplicates() Explained
- Pandas Set Column as Index in DataFrame
- Pandas set_index() – Set Index to DataFrame
- Pandas Get Column Name by Index or Position
- How to Drop Rows From Pandas DataFrame
- Change the Order of Pandas DataFrame Columns
- How to Combine Two Series into pandas DataFrame